August 2022 Drainage Work Group Meeting

Early Coordination with Landowners

Feasibility Study Process

Chuck Brandel, PE

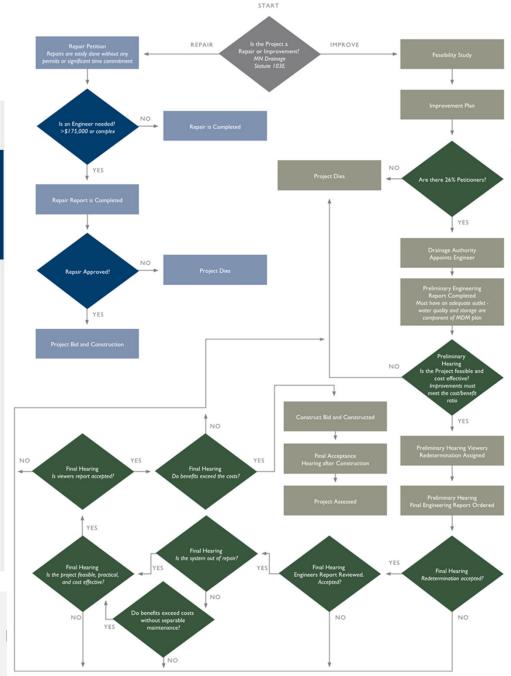
ISG Vice President

Importance of Drainage to Landowners

AGRICULTURAL DRAINAGE

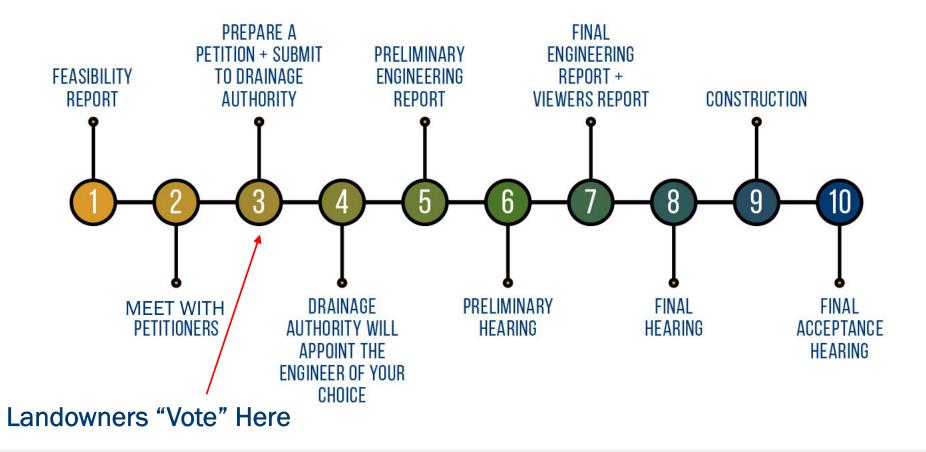
- Most of MN needs artificial drainage to support agriculture
- MN drainage statutes developed in 1800's, refined in early 1900's
- ✓ 1900's 1920's: numerous public drainage systems constructed
- ✓ 10,000+ public tile systems in MN
- Many more private ditch and tile systems

All Costs on a 103E System are Paid for by Landowners within that System



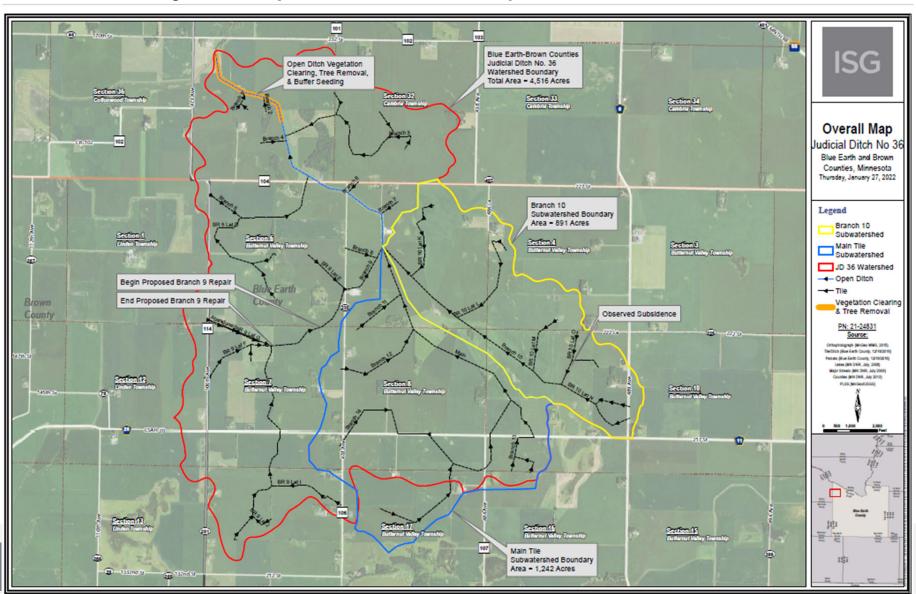
MN 103E Process

REPAIR OR IMPROVEMENT?

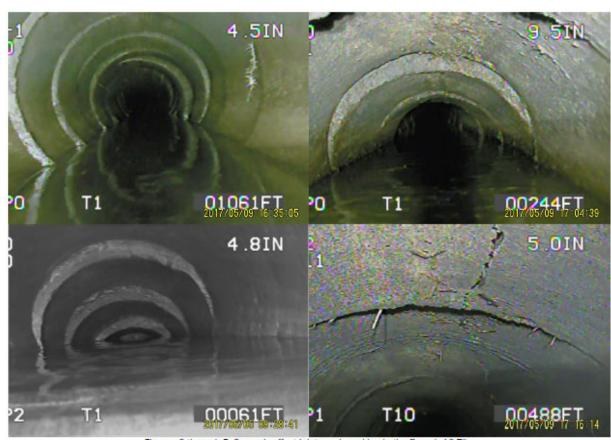

- Repairs Same Hydraulic Capacity – ACSI
- Improvements/Projects Change Capacity/Depth/Require Petition
- Legal Process Starts with the Petition – Feasibility Studies are a way to get alternative options including water quality added to projects.

Architecture + Engineering + Environmental + Planning

ISG's Drainage Process - Improvements

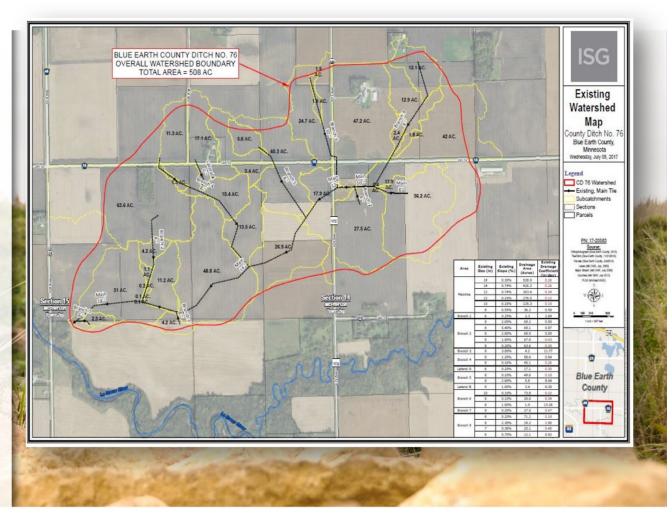


Getting Started: The Feasibility Process


Discuss Water Quality and Storage at Every Meeting

Feasibility Example - Blue Earth/Brown JD 36

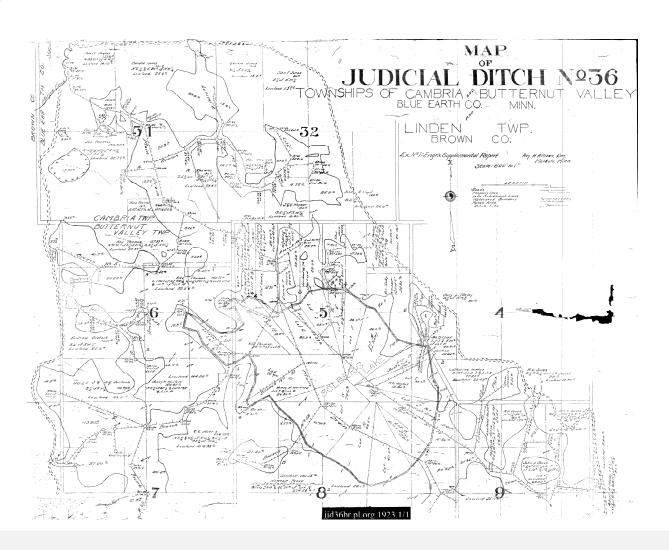
Landowners Report an Issue or Inspector Finds an Issue


- Tile was Blowing out, shallow and exposed at the surface due to Subsidence – Landowner Brings Up issue
- System Televised to See extent of the issues – Drainage Authority Investigates
- Feasibility Report
 Ordered by Drainage
 Authority to address
 repairs needed

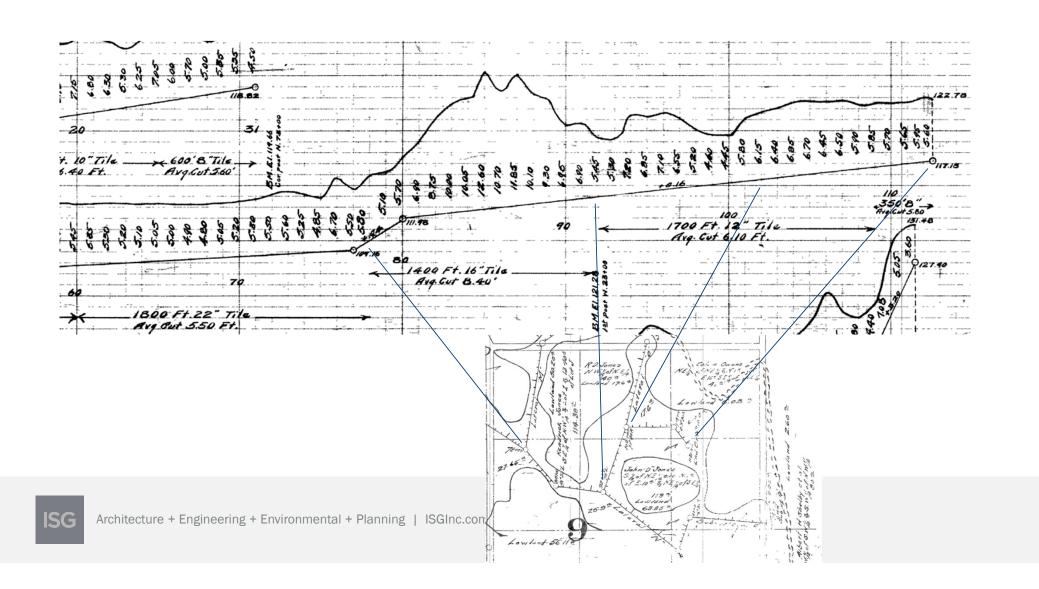
Figures 2 through 5. Severely offset joints and cracking in the Branch 10 Tile.

FEASIBILITY STUDY

- ✓ Describes system history
- Defines existing capacity of both ditches and tiles
- Considers multiple options for repairs and improvements
- ✓ Compares repair costs versus improvement costs
- Includes adequacy of the outlet, opinion of cost benefit ratio, and potential benefits



Watershed History


1923 expansion as JD 36

2001 repair (Branch 9)

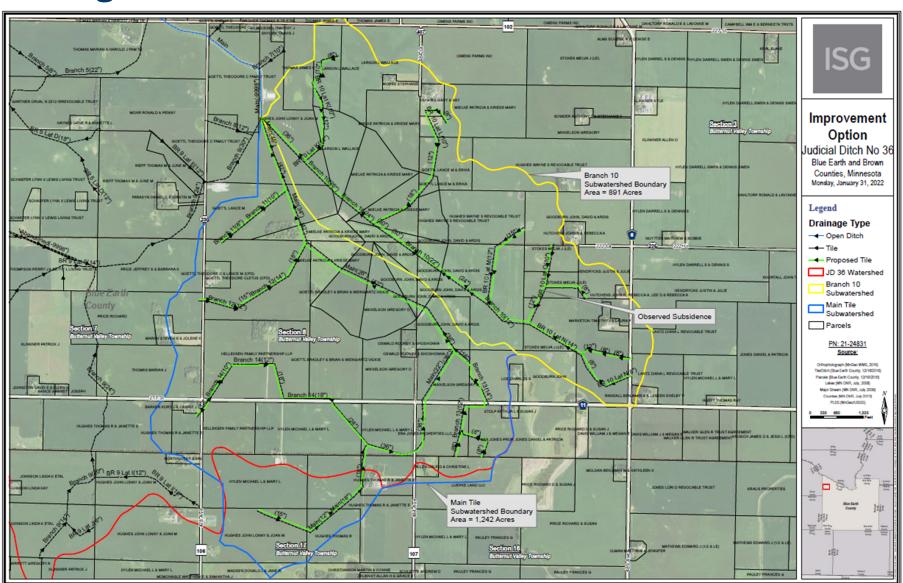
No known improvements

Branch 10 As-Constructed Profile (1923)

Feasibility Study- Review Capacities and Depths

Area	ACSIC Size (in)	Proposed Size (in)	ACSIC Slope (%)	Proposed Slope (%)	Drainage Area (Acres)	ACSIC Drainage Coefficient (in/day)	Proposed Drainage Coefficient (in/day)
Branch 10	22	24	0.94%	0.16%	362.1	1.15	0.60
Branch 10	16	18	0.94%	0.16%	224.9	0.79	0.45
Branch 10	16	18	0.16%	0.16%	211.0	0.35	0.48
Branch 10	12	12	0.16%	0.16%	79.0	0.43	0.43
Branch 10	8	8	0.16%	0.16%	31.1	0.37	0.37
Lateral M	12	12	0.10%	0.10%	137.2	0.20	0.20
Lateral M	10	10	0.10%	0.10%	98.3	0.17	0.17
Lateral M	8	8	0.10%	0.10%	92.2	0.10	0.10
Lateral O	10	10	0.20%	0.20%	18.0	1.30	1.30
Lateral O	8	8	0.60%	0.60%	7.1	3.15	3.15

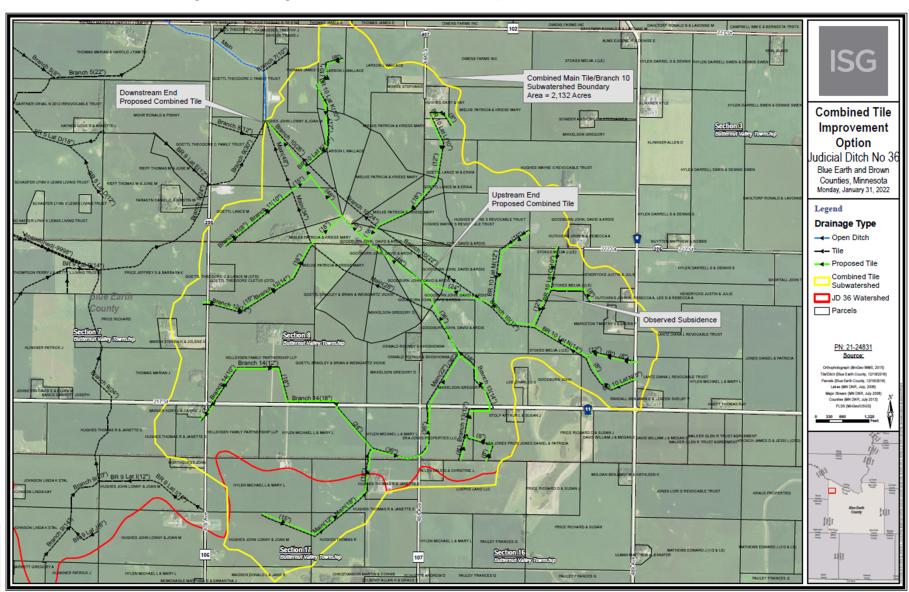
Feasibility Study-Review Repair Capacities and Depths


Area	ACSIC Size (in)	Proposed Size (in)	ACSIC Minimum Cover (ft)	Assumed Minimum Cover After 1.9 ft Subsidence (ft)	Proposed Minimum Cover (ft)	Depth Gained (ft)	
Branch 10	22	24	3.6	1.7	1.5	-0.2	
Branch 10	16	18	3.7	1.8	3.9	2.2	
Branch 10	16	18	4.0	2.1	4.3	2.2	
Branch 10	12	12	3.4	1.5	3.8	2.3	
Branch 10	8	8	4.8	2.9	5.3	2.3	
Lateral M	12	12	2.4	0.5	1.3	0.8	
Lateral M	10	10	4.8	2.9	3.7	0.8	
Lateral M	8	8	2.9	1.0	1.8	0.8	
Lateral O	10	10	3.1	1.2	3.6	2.3	
Lateral O	8	8	3.6	1.7	4.1	2.3	

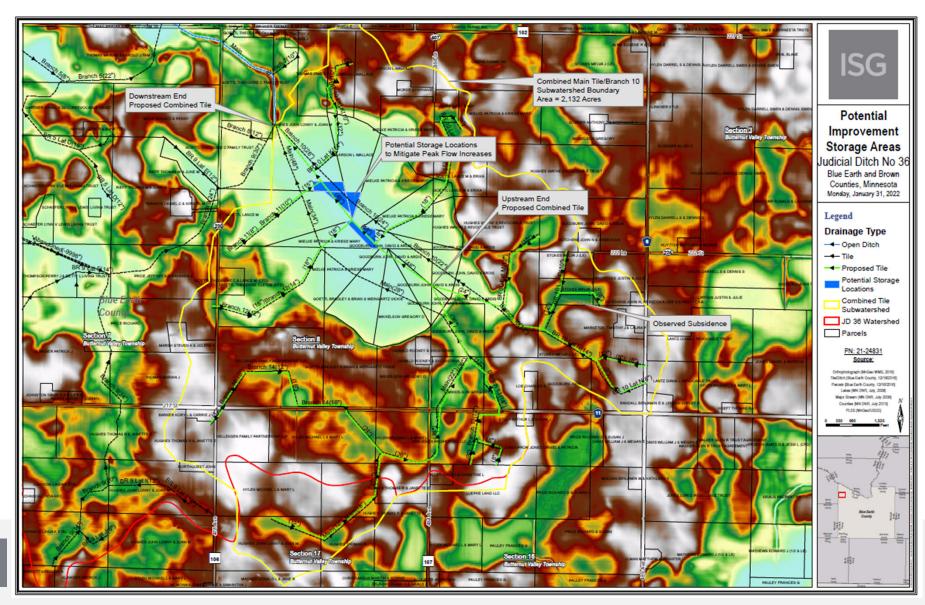
Repair Does not Solve Cover Issues on Portions of the System

Project Improvement Design Criteria – Public Tile

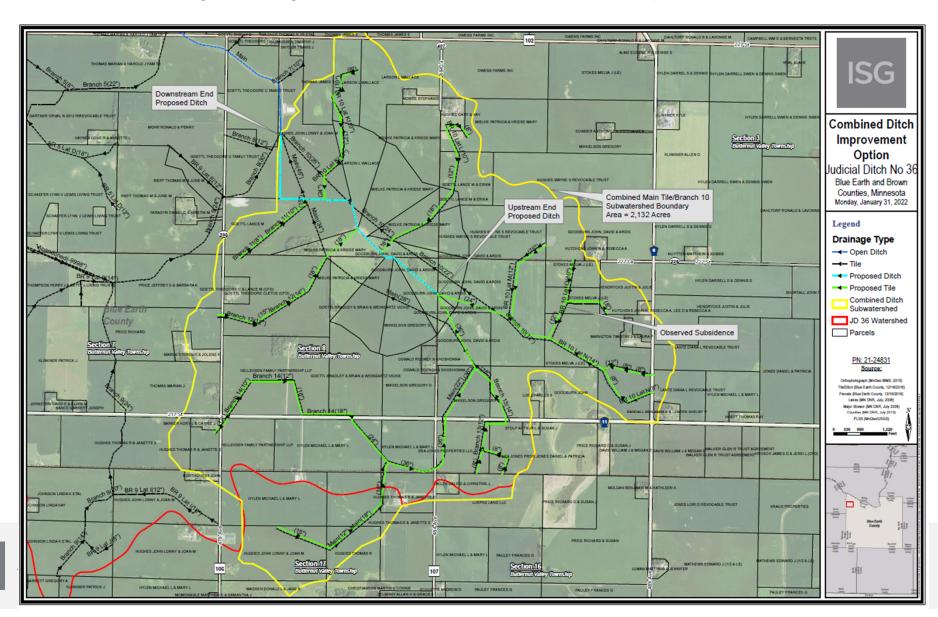
Feasibility Study-Review Capacities, Depths and Alignment

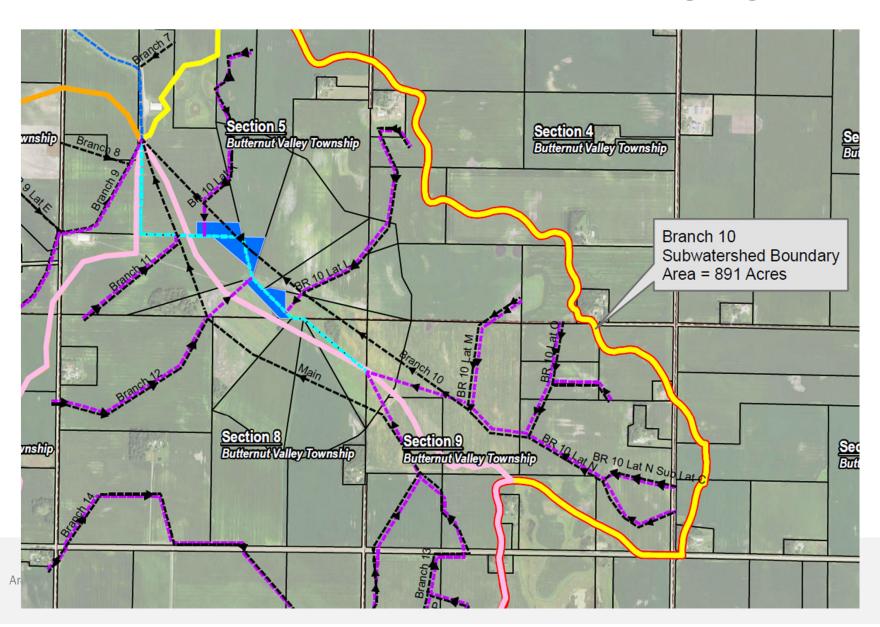


Feasibility Study-Review Capacities and Alignment

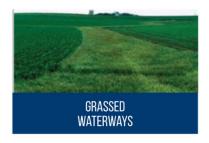

IMPROVEMENT TILE SUMMARY - BRANCH 10 SUBWATERSHED

Area	ACSIC Size (in)	Proposed Size (in)	ACSIC Slope (%)	Proposed Slope (%)	Drainage Area (Acres)	ACSIC Drainage Coefficient (in/day)	Proposed Drainage Coefficient (in/day)
Branch 10	26	36	0.08%	0.08%	890.5	0.21	0.51
Branch 10	24	30	0.08%	0.10%	614.1	0.25	0.50
Branch 10	22	30	0.08%	0.06%	464.1	0.26	0.52
Branch 10	22	24	0.94%	0.12%	362.1	1.15	0.52
Branch 10	16	18	0.94%	0.21%	224.9	0.79	0.51
Branch 10	16	18	0.16%	0.18%	211.0	0.35	0.50
Branch 10	12	12	0.16%	0.22%	79.0	0.43	0.50
Branch 10	8	8	0.16%	0.30%	31.1	0.37	0.51
Lateral K	14	24	0.20%	0.05%	221.0	0.26	0.55
Lateral K	10	12	0.44%	0.28%	88.3	0.39	0.51
Lateral K	8	10	0.44%	0.30%	56.0	0.34	0.51
Lateral K	8	8	1.00%	0.70%	47.7	0.60	0.51
Lateral L	12	18	0.24%	0.05%	109.4	0.38	0.51
Lateral L	10	12	0.24%	0.11%	54.6	0.47	0.52
Lateral L	8	8	0.60%	0.28%	30.0	0.75	0.51
Lateral M	12	18	0.10%	0.08%	137.2	0.20	0.52
Lateral M	10	15	0.10%	0.11%	98.3	0.17	0.52
Lateral M	8	15	0.10%	0.09%	92.2	0.10	0.50
Lateral N	14	18	0.16%	0.06%	118.3	0.43	0.52
Lateral N	8	8	0.80%	0.50%	19.6	1.31	1.04
Lateral N Sublateral C	10	12	0.20%	0.06%	41.8	0.56	0.50
Lateral N Sublateral C	8	8	2.00%	0.44%	37.8	1.08	0.51
Lateral N Sublateral C	8	8	0.20%	0.30%	31.7	0.41	0.50
Lateral O	10	8	0.20%	0.10%	18.0	1.30	0.51
Lateral O	8	8	0.60%	0.06%	7.1	3.15	0.99


Feasibility Study-Alternative Options - Combine Tiles


Feasibility Study-Review Storage and MDM

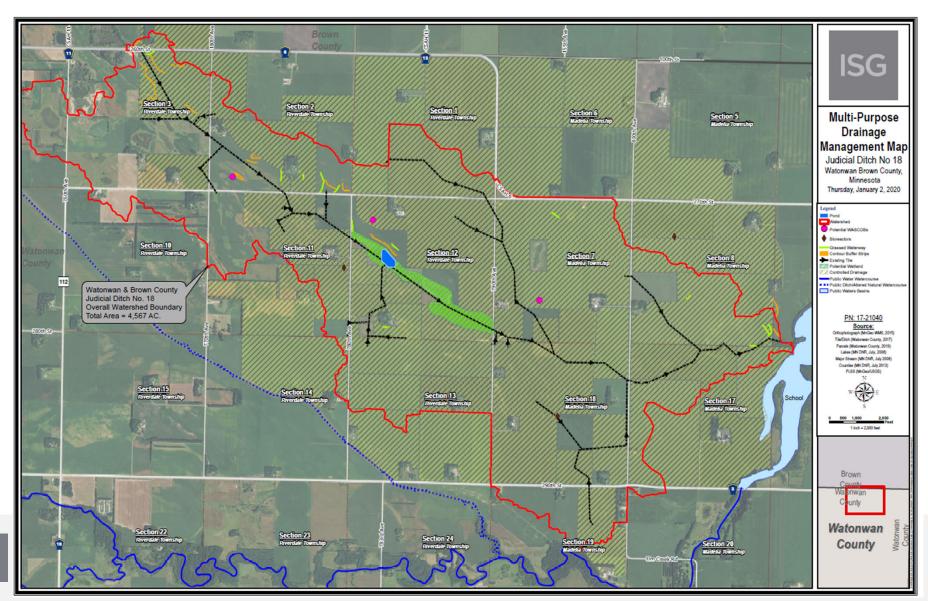
Feasibility Study-Alternative Options - Open Ditch


Feasibility Study-Alternative Options -Storage Again

Cost Benefit Review

Branch		Repair Cost		Improvement Cost		Combined Tile Improvement Cost	Combined Ditch Improvement Cost		
Main Ditch	\$	-	\$	-	\$	56,836	\$	898,420	
Main Tile	\$	1,572,738	\$	2,006,823	\$	2,087,409	\$	891,468	
Branch 10 Tile	\$	882,396	\$	1,095,551	\$	321,293	\$	323,695	
Lateral K Tile	\$	147,441	\$	165,405	\$	176,683	\$	205,989	
Lateral L Tile	\$	212,337	\$	230,996	\$	256,898	\$	258,877	
Lateral M Tile	\$	118,258	\$	133,948	\$	133,948	\$	133,948	
Lateral N Tile	\$	193,470	\$	201,386	\$	201,386	\$	201,386	
Sublateral C Tile	\$	82,906	\$	85,733	\$	85,733	\$	85,733	
Lateral O Tile	\$	64,332	\$	63,767	\$	63,767	\$	63,767	
Branch 11 Tile	\$	104,574	\$	113,055	\$	147,771	\$	124,719	
Branch 12 Tile	\$	187,989	\$	197,458	\$	256,830	\$	258,809	
Branch 13 Tile	\$	266,390	\$	278,546	\$	278,546	\$	278,546	
Lateral P Tile	\$	27,770	\$	28,336	\$	28,336	\$	28,336	
Branch 14 Tile	\$	418,847	\$	478,843	\$	478,843	\$	478,843	
Total	\$	4,279,449	\$	5,079,847	\$	4,574,280	\$	4,232,536	
Redetermination of Benefits	\$	-	\$	12,792	\$	12,792	\$	12,792	
Total Project Costs for Landowners		4,279,449	\$	5,092,639	\$	4,587,072	\$	4,245,328	

Discuss Multi-Purpose Drainage Management

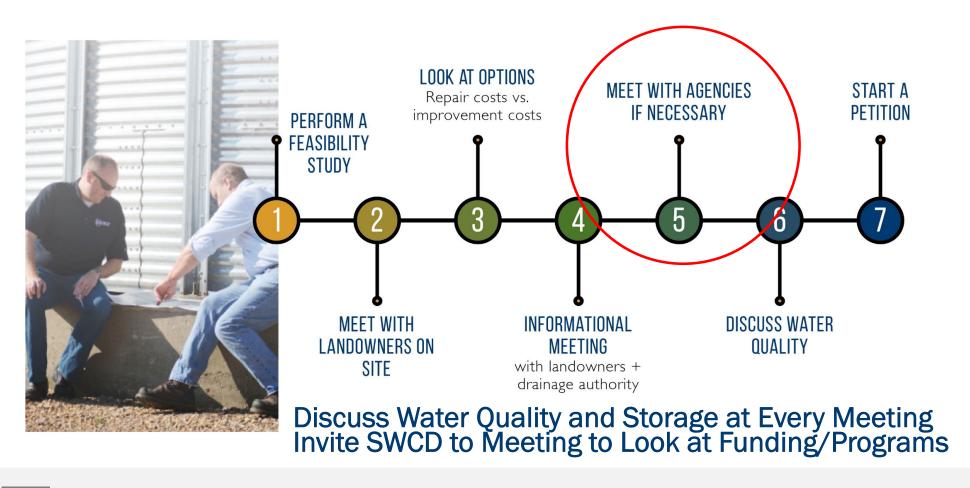


MDM Plan for the Entire Watershed

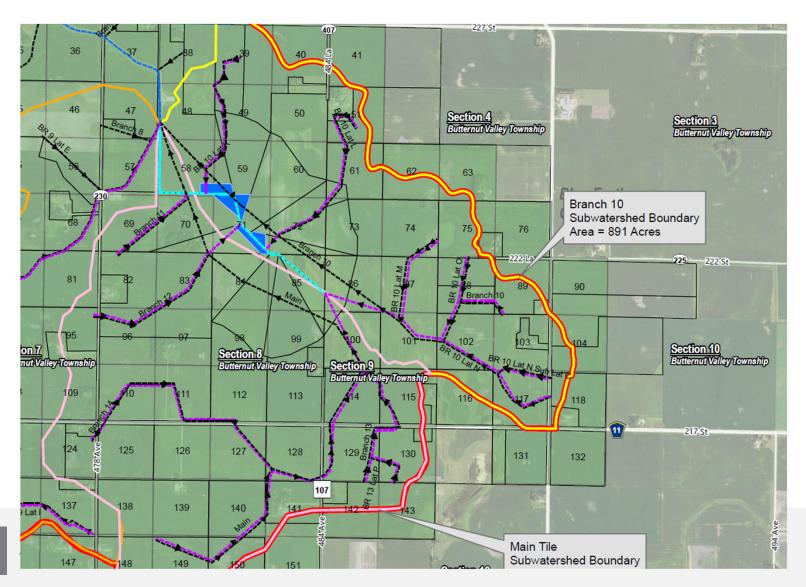
Storage – Show Examples of what works

Martin CD 29

Storage – Show Examples



Cost Options for Storage/Wetland Restorations


Storage Basin

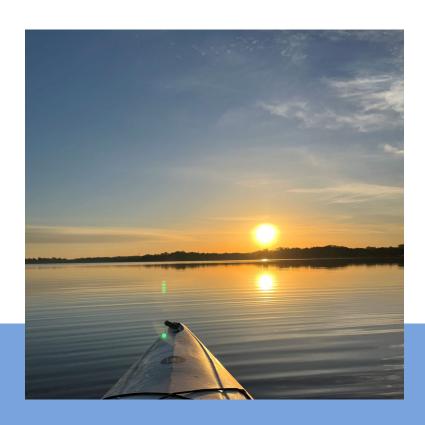
Item No.	Item	Unit	Quantity	Ų	Jnit Price		Amount		
101	MOBILIZATION	LS	1	\$	9,980.00	\$	9,980		
102	COMMON EXCAVATION	CY	62405	\$	3.25	\$	202,816		
103	TOP SOIL STRIP & PLACE SPOILS	AC	6.5	\$	4,000.00	\$	26,000		
104	36-INCH TILE OUTLET	EA	1	\$	1,433.50	\$	1,434		
104	(20 LF OF PIPE & RIPRAP ON GEOTEXTILE FABRIC)	LA				>	1,454		
105	24-INCH TILE OUTLET		1	\$	1,150.30	\$	1,150		
103	(20 LF OF PIPE & RIPRAP ON GEOTEXTILE FABRIC)	EA		¥	1,130.30	→	1,130		
106	INSTALL STRUCTURE S-1 WITH GALVINIZED GRATE	LS	1	\$	15,000.00	\$	15,000		
107	16.5' BUFFER STRIP SEEDING	AC	0.75	\$	1,060.20	\$	795		
107	(SEED MIX: BUFFER BLEND WITH TYPE 3 MULCH)	٨٥)			
108	STANDARD SIDESLOPE SEEDING	AC	0.5	\$	3,450.40	\$	1,725		
109	BUFFER STRIP MOWING	AC	1.5	\$	80.50	\$	121		
110	WEED SPRAYING	AC	2	\$	157.30	\$	315 259,336		
TOTAL									
			109		NFORSEEN		25,934		
					SUBTOTAL	_	285,269		
	LAND ACQUISTION/ PERMANENT DAMAGES	AC	6.36	\$	6,000.00	\$	38,160		
	TEMPORARY DAMAGES	AC	12.72	\$	650.00	\$	8,268		
COUNTÝ ADMINISTRATION COSTS									
REPORTS, PLANS AND SPECIFICATIONS									
			AKING & AD				22,822		
TOTAL STORAGE BASIN IMPROVEMENT COST									

Meet with Agencies

Final Landowner Meetings and Petition


Early Landowner Coordination - Summary

- Figure out Landowner Issues Can Repairs Solve the Problem
- Develop Feasibility with Options Repairs, Storage, Improvement Options Before Legal Process Starts – Be Creative and include in the Petition
- Discuss Water Quality and Storage
- Review The Options and Costs Some projects are not cost effective Target Failing Areas Due to Costs
- Discuss Water Quality and Storage
- Communicate Typically 2 to 3 meetings are needed for Large Projects
- Meet With Agencies, SWCD, Discuss Funding Options
- Feasibility Report Should be Ordered by Drainage Authority and Paid for by the System to address repairs needed, Allows Engineer to look at Options and review Storage – Landowners will not always look at all options on their own



Thank You

Chuck Brandel, PE, ISG Vice President 507.387.6651 | Chuck.Brandel@ISGInc.com

